Count Strings

A regular expression is used to describe a set of strings. For this problem the alphabet is limited to 'a' and 'b'.

We define \(R \) to be a valid regular expression if:

1) \(R \) is "a" or "b".
2) \(R \) is of the form \((R_1 R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions.
3) \(R \) is of the form \((R_1 | R_2) \) where \(R_1 \) and \(R_2 \) are regular expressions.
4) \(R \) is of the form \((R_1^*) \) where \(R_1 \) is a regular expression.

Regular expressions can be nested and will always have two elements in the parentheses. ('*' is an element, '|' is not; basically, there will always be pairwise evaluation) Additionally, '*' will always be the second element; '('*a')' is invalid.

The set of strings recognized by \(R \) are as follows:

1) If \(R \) is "a", then the set of strings recognized = \(a \).
2) If \(R \) is "b", then the set of strings recognized = \(b \).
3) If \(R \) is of the form \((R_1 R_2) \) then the set of strings recognized = all strings which can be obtained by a concatenation of strings \(s_1 \) and \(s_2 \), where \(s_1 \) is recognized by \(R_1 \) and \(s_2 \) by \(R_2 \).
4) If \(R \) is of the form \((R_1 | R_2) \) then the set of strings recognized = union of the set of strings recognized by \(R_1 \) and \(R_2 \).
5) If \(R \) is of the form \((R_1^*) \) then the the strings recognized are the empty string and the concatenation of an arbitrary number of copies of any string recognized by \(R_1 \).

Task
Given a regular expression and an integer, \(L \), count how many strings of length \(L \) are recognized by it.

Input Format
The first line contains the number of test cases \(T \). \(T \) test cases follow.
Each test case contains a regular expression, \(R \), and an integer, \(L \).

Constraints

- \(1 \leq T \leq 50 \)
- \(1 \leq |R| \leq 100 \)
- \(1 \leq L \leq 10^9 \)

- It is guaranteed that \(R \) will conform to the definition provided above.

Output Format
Print \(T \) lines, one corresponding to each test case containing the required answer for the corresponding test case. As the answers can be very big, output them modulo \(10^9 + 7 \).

Sample Input

```
3
((ab)|(ba)) 2
((a|b)*) 5
((a*)(b(a*))))) 100
```
Sample Output

2
32
100

Explanation

For the first case, the only strings recognized are "ab" and "ba". Of the 4 possible strings of length 2, 2 of them fit that expression.

For the second case, the RegEx recognizes any string of any length containing only a's and b's. The number of strings of length 5 recognized by this expression is \(2^5 = 32\).

For the third case, the RegEx recognizes any string having one b, preceded and followed by any number of a's. There are 100 strings of length 100 which have a single b in them.