Swap Permutation

You are given an array \(A = [1, 2, 3, ..., n] \):

1. How many sequences (\(S_1 \)) can you get after exact \(k \) adjacent swaps on \(A \)?
2. How many sequences (\(S_2 \)) can you get after at most \(k \) swaps on \(A \)?

An adjacent swap can be made between two elements of the Array \(A \), \(A[i] \) and \(A[i+1] \) or \(A[i] \) and \(A[i-1] \). A swap otherwise can be between any two elements of the array \(A[i] \) and \(A[j] \) \(\forall 1 \le i, j \le N, i \neq j \).

Input Format

First and only line contains \(n \) and \(k \) separated by space.

Constraints

\[1 \leq n \leq 2500 \]
\[1 \leq k \leq 2500 \]

Output Format

Output \(S_1 \% MOD \) and \(S_2 \% MOD \) in one line, where \(MOD = 1000000007 \).

Sample Input

```
3 2
```

Sample Output

```
3 6
```

Explanation

Original array: [1, 2, 3]
1. After 2 adjacent swaps:
 We can get [1, 2, 3], [2, 3, 1], [3, 1, 2] \(\implies S_1 \equiv 3 \)

2. After at most 2 swaps:
 1) After 0 swap: [1, 2, 3]
 2) After 1 swap: [2, 1, 3], [3, 2, 1], [1, 3, 2].
 3) After 2 swaps: [1, 2, 3], [2, 3, 1], [3, 1, 2]

\(\implies S_2 \equiv 6 \)