Introduction to Nim Game

Nim is the most famous two-player algorithm game. The basic rules for this game are as follows:

- The game starts with a number of piles of stones. The number of stones in each pile may not be equal.
- The players alternately pick up 1 or more stones from 1 pile
- The player to remove the last stone wins.

For example, there are $n = 3$ piles of stones having $pile = [3, 2, 4]$ stones in them. Play may proceed as follows:

<table>
<thead>
<tr>
<th>Player</th>
<th>Takes</th>
<th>Leaving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 from pile[1]</td>
<td>pile=[3,2,4]</td>
</tr>
<tr>
<td>2</td>
<td>2 from pile[1]</td>
<td>pile=[3,2]</td>
</tr>
<tr>
<td>1</td>
<td>1 from pile[0]</td>
<td>pile=[2,2]</td>
</tr>
<tr>
<td>2</td>
<td>1 from pile[0]</td>
<td>pile=[1,2]</td>
</tr>
<tr>
<td>1</td>
<td>1 from pile[1]</td>
<td>pile=[1,1]</td>
</tr>
<tr>
<td>2</td>
<td>1 from pile[0]</td>
<td>pile=[0,1]</td>
</tr>
<tr>
<td>1</td>
<td>1 from pile[1]</td>
<td>WIN</td>
</tr>
</tbody>
</table>

Given the value of n and the number of stones in each pile, determine the game's winner if both players play optimally.

Function Description

Complete the `nimGame` function in the editor below. It should return a string, either **First** or **Second**.

`nimGame` has the following parameter(s):

- `pile`: an integer array that represents the number of stones in each pile

Input Format

The first line contains an integer, g, denoting the number of games they play.

Each of the next g pairs of lines is as follows:

1. The first line contains an integer n, the number of piles.
2. The next line contains n space-separated integers $pile[i]$, the number of stones in each pile.

Constraints

- $1 \leq g \leq 100$
- $1 \leq n \leq 100$
- $0 \leq s_i \leq 100$
- Player 1 always goes first.

Output Format
For each game, print the name of the winner on a new line (i.e., either First or Second).

Sample Input

```
2
2
1 1
3
2 1 4
```

Sample Output

```
Second
First
```

Explanation

In the first case, there are \(n = 2 \) piles of \(pile = [1, 1] \) stones. Player 1 has to remove one pile on the first move. Player 2 removes the second for a win.

In the second case, there are \(n = 3 \) piles of \(pile = [2, 1, 4] \) stones. If player 1 removes any one pile, player 2 can remove all but one of another pile and force a win. If player 1 removes less than a pile, in any case, player 2 can force a win as well, given optimal play.