Day 9: Multiple Linear Regression

Objective
In this challenge, we practice using *multiple linear regression*. Check out the Tutorial tab for learning materials!

Task
Andrea has a simple equation:

\[Y = a + b_1 \cdot f_1 + b_2 \cdot f_2 + \ldots + b_m \cdot f_m \]

for \((m + 1)\) real constants \((a, f_1, f_2, \ldots, f_m)\). We can say that the value of \(Y\) depends on \(m\) features. Andrea studies this equation for \(n\) different feature sets \((f_1, f_2, f_3, \ldots, f_m)\) and records each respective value of \(Y\). If she has \(q\) new feature sets, can you help Andrea find the value of \(Y\) for each of the sets?

Note: You are not expected to account for bias and variance trade-offs.

Input Format
The first line contains 2 space-separated integers, \(m\) (the number of observed features) and \(n\) (the number of feature sets Andrea studied), respectively.
Each of the \(n\) subsequent lines contain \(m + 1\) space-separated decimals; the first \(m\) elements are features \((f_1, f_2, f_3, \ldots, f_m)\), and the last element is the value of \(Y\) for the line's feature set.
The next line contains a single integer, \(q\), denoting the number of feature sets Andrea wants to query for.
Each of the \(q\) subsequent lines contains \(m\) space-separated decimals describing the feature sets.

Constraints
- \(1 \leq m \leq 10\)
- \(5 \leq n \leq 100\)
- \(0 \leq x_i \leq 1\)
- \(0 \leq Y \leq 10^6\)
- \(1 \leq q \leq 100\)

Scoring
For each feature set in one test case, we will compute the following:

- \(d_i = \frac{|\text{Computed value of } Y - \text{Expected value of } Y|}{\text{Expected value of } Y}\)
- \(d_i = \max(d_i - 0.1, 0)\). We will permit up to a \(\pm 10\%\) margin of error.
- \(s_i = \max(1.0 - d_i, 0)\)

The normalized score for each test case will be: \(S = \frac{\sum_{i=1}^{q} s_i}{q}\). If the challenge is worth \(C\) points, then your score will be \(S \times C\).

Output Format
For each of the \(q\) feature sets, print the value of \(Y\) on a new line (i.e., you must print a total of \(q\) lines).

Sample Input

2 7
Sample Output

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>105.22</td>
<td>142.68</td>
<td>132.94</td>
</tr>
<tr>
<td>129.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation

We're given $m = 2$, so $Y = a + b_1 \cdot f_1 + b_2 \cdot f_2$. We're also given $n = 7$, so we determine that Andrea studied the following feature sets:

- $a + 0.18 \cdot b_1 + 0.89 \cdot b_2 = 109.85$
- $a + 1.0 \cdot b_1 + 0.26 \cdot b_2 = 155.72$
- $a + 0.92 \cdot b_1 + 0.11 \cdot b_2 = 137.66$
- $a + 0.07 \cdot b_1 + 0.37 \cdot b_2 = 76.17$
- $a + 0.85 \cdot b_1 + 0.16 \cdot b_2 = 139.75$
- $a + 0.99 \cdot b_1 + 0.41 \cdot b_2 = 162.6$
- $a + 0.87 \cdot b_1 + 0.47 \cdot b_2 = 151.77$

We use the information above to find the values of a, b_1, and b_2. Then, we find the value of Y for each of the q feature sets.