The *poly* tool returns the coefficients of a polynomial with the given sequence of roots.

\[
\text{print numpy.poly([-1, 1, 1, 10])}
\]

#Output : [1 -11 9 11 -10]

The *roots* tool returns the roots of a polynomial with the given coefficients.

\[
\text{print numpy.roots([1, 0, -1])}
\]

#Output : [-1. 1.]

The *polyint* tool returns an antiderivative (indefinite integral) of a polynomial.

\[
\text{print numpy.polyint([1, 1, 1])}
\]

#Output : [0.33333333 0.5 1. 0.]

The *polyder* tool returns the derivative of the specified order of a polynomial.

\[
\text{print numpy.polyder([1, 1, 1, 1])}
\]

#Output : [3 2 1]

The *polyval* tool evaluates the polynomial at specific value.

\[
\text{print numpy.polyval([1, -2, 0, 2], 4)}
\]

#Output : 34

The *polyfit* tool fits a polynomial of a specified order to a set of data using a least-squares approach.

\[
\text{print numpy.polyfit([0,1,-1, 2, -2], [0,1,1, 4, 4], 2)}
\]

#Output : [1.00000000e+00 0.00000000e+00 -3.97205465e-16]

The functions *polyadd*, *polysub*, *polymul*, and *polydiv* also handle proper addition, subtraction, multiplication, and division of polynomial coefficients, respectively.

Task

You are given the coefficients of a polynomial \(P \).
Your task is to find the value of P at point x.

Input Format

The first line contains the space separated value of the coefficients in P.
The second line contains the value of x.

Output Format

Print the desired value.

Sample Input

```
1.1 2 3
0
```

Sample Output

```
3.0
```